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Abstract 

Assuming Boltzmann’s superposition rule and non-aging materials the reversibility of linear 
phenomenological viscoelastic models are investigated with special attention to Maxwell-Burgers 
bodies like.  

On the basis of Terzaghi’s porous ground and hysteresis phenomenon, the new concept of 
reversibility is presented. The above idea is illustrated in the cases of Maxwell and Kelvin-Voigt 
models.  

Finally, the task of simple beam vibration is analyzed, while its material properties are found as 
adequate to Maxwell’s model. The result that has been obtained is proving that Maxwell model, and 
generalizing Maxwell Class models, are reversible. 
 
1. Introduction 

 
Not frequently, but it happens that in technical literature, especially in highway 

engineering, there appears incorrect classification of Burgers model [1], [2], [3]. As it is 
presented at  Fig. 1., Burgers creep function is an adequate approximation curve for 
describing presented laboratory results, but the straight application yield rather to large least 
squares method error [4]. The components of Burgers model can be sectioned off into 
following elements – 

 
exponental

ev
linear

eveB −− ε+ε+ε=ε↑ , lexponentia
eveB 0 −ε++ε=ε↓ ,     (1) 

 
where eε  - stands for the immediate elastic strain, linar

ev−ε  - linear viscous flow process of strain, 
lexponentia

ev−ε  - exponential viscous flow; the arrows orientation is associated with -  ↑  - applied 

load period and ↓  - destressing.  
The above description strongly shows the absence of linar

ev−ε  component in destresing 

process. The lack of this element entails treating the residual value in Burgers creep function 
as an irreversible part and as a consequence to classify Burgers model as irreversible too.  

Our aim is to show the contradiction of such concept and try to formulate the idea of 
reversibility. 

With reference to straightforward applying of Burgers model – is better to use the 
expanded Burgers model by series connection with Saint-Venant element [5] – 

 

VStB −Σ ε+ε=ε          (2) 

 
where Σε  - summary strain, Bε  - Burgers model strain, VSt−ε  - plastic strain., in that case we 

bear in mind that the involved model belongs to Bingham Class bodies. In such case, one can 
avoid the inaccuracy of approximation errors. 

In further considerations Maxwell Class model is understood as - the Maxwell as well as 
Gubanow and Burgers and similar other models. 
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Fig. 1. An example of typical road pavement asphalt-mortar creep test graph. The ordinates related to 
the last abscissa value, in technical sense, are treated as measures of plastic deformations. 
 
 
2. Viscoelasticity 

 
Viscoelesticity could be treated as a natural extension of elasticity. The elasticity is 

precisely defined by mathematical relations and physical concepts. In the case of 
viscoelasticity the definition is not so clear. We can define viscoelasticity as a relation 
between stress and strain tensors and their time derivatives of different ranks  
 
 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 0....,t,,ε,σ,,σ,ε,σF....,t,I,I,,I,I,I,IΦ nmnmnm =ε→εσεσεσ

&&&&&&&&&&&& ,     (3) 
 
where ( )σ

mI , 321m ,,=  - invariants of the stress tensorσ , ( )ε
nI , n=1,2,3  - invariants of the strain 

tensor, dots which can be noticed over the symbols means partial derivatives according to 
time. 

The second element of viscoelastisity definition comes from Boltzmann’s superposition, 
which refers to the load history. We conclude that: 
- Each load is a component of the load history, 
- The total final strain is a sum of deformations caused by all components of the load 

history. 
Although the examples of the Bolzmann’s principle can be found in many works, we 

illustrate them below by taking into account the load (4) acting to Kelvin-Voigt and Burgers 
models –  

 
)]tt(H)tt(H[)]tt(H)tt(H[ 322411 −−−σ+−−−σ=σ     (4) 

 

where:    (5) 






<−←

≥−←
=−

0)tt(0

0)tt(1
)tt(H

(.)

(.)

(.)  - Heavisidea’s step function,  

 

1σ , 2σ ; ][sig][sig 21 σ=σ  - different stress values, 4321 tttt <<<  - time moments. 
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Fig. 1. Boltzmann’s superposition. a) Loads. b) Kelvina-Voigt model reaction. c) Burgers body 
response. 

In the case b) the unloading causes that the deformation fades after longenough time, 
so we get 
 0limlim 2

t
1

t
→ε=ε

∞→∞→
 ,         (6) 

 
whereas for Burgers material c), according to the same load history a), we observe permanent 
strain value when ∞→t :  
 
 0lim 11

t
≠ε=ε ∞∞→

, 0lim 22
t

≠ε=ε ∞∞→
, ∞∞∞∞→

ε=ε+ε=ε 21
t
lim .   (7) 

 
According to Fig. 1., for ∞→t : Kelvina-Voigt model return to the initial null strain value 

while Burgers model achieve a residual (non-initial) strain value and looks like to be 
irreversible one, as has been noticed in the beginning of the paper. All the time we have in 
mind that both of these models are linearly viscoelastic.  

Let us also discuss the concept of Perzyna [6]. In spite of the fact that he regards visco-
plasticity, his methodology is very useful for adopting to our problem. We can read “the 
methods of viscoplasticity belong neigher to rheology nor to plasticity”. On that basis he 
introduces two material classes:  

 
- Elastic - viscoplastic – for which the material shows viscous properties in both elastic and 

plastic regions. 
 
- Elastic / viscoplastic - reserved for materials showing viscous properties in plastic region 

only.  
In both cases above the viscous flow deformation could be further divided into irreversible 

and reversible parts 
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 p
ij

v
ij

e
ijij ε+ε+ε=ε  ,         (8) 

 
since ijε , e

ijε , v
ijε , p

ijε  - are as it follows: total, elastic, viscous and plastic strain tensor 

components. Contemporary both processes are classified as Bingham model. 
 
Adopting Perzyna’s concept we can introduce two types of viscoelasticity: 
 

- Visco - elasticity – when viscous and elastic components develop in parallel and 
 
- Visco / elasticity – for the previous immediate elastic deformation and after that viscous 

deformation process, 
 
but both of them are reversible. According to the time scale of road pavement asphalt-mortar 
creep test, it could be included into visco / elasticity class, which is identical with 
viscoelasticity in further considerations.  

 
Relation (1) can be treated as a complete constitutive relation and, in our consideration, 

we confine ourselves to invariant linear processes i.e. satisfying the relation – 
 

 ( )[ ]mm

k

3,2,1m

tt,1f)t,(
m

−σ=σε ∑
=

,        (9) 

 
where ε -strain, ( ),σ -stress in the one dimensional case and  t – is a time parameter. 

We would like to emphasize that the creep problem is reduced to the case of one 
dimensional body and to the analysis of an initial stage – transient creep. We disregard steady 
state creep and creep to failure. Additionally, we assume that initial conditions are always 
homogenous. 
 
3. Maxwell Class Models 
 

Let us compare the differential constitutive relations of several elementary viscoelastic 
models: 

- Maxwell  101 b_aa ε+=σ+σ && ,     (10.1) 

- Burgers  21012 bb_aaa ε+ε+=σ+σ+σ &&&&&& ,   (10.2) 

- Kelvina-Voigt  100 bba ε+ε=σ & ,     (11.1) 

- Zener   1001 bbaa ε+ε=σ+σ && ;    (11.2) 

 

where 210210 b,b,b,a,a,a  - are the material characteristics. In spite of the same notation they 

can have different values for different models. 
 
Nowacki [7] comments the following formula )t()D(Q)t()D(P ε=σ  by sentences – ‘The 

ranks of Q(D) and P(D) operators should be equal (m=n)’ and   ‘It is admissible to assume 
the case when the rank of Q(D)is one rank higher  then the P(D) rank’. 
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Also Rzanicyn analyses the problem [8] writing following remarks – ‘The rank of 
differential equation is equal to the number of dashpots in the model’ and ‘In case of lacks of 
constant elastic connection between deforming points, then instead of  ε  we have its time 
derivative. The long-standing stress yields the ε  increase up to infinity’.  

For (10.1-2) and (11.1-2) the conditions formulated by Nowacki and Rzanicyn are 
fulfilled but we can also notice not discussed feature i.e. the absence of one sequence element 
in Maxwell and Budgers models, notified by ‘_’ in (11.1-2) formulae.  

 
Now we can also define the Maxwell Class as models for which theirs constructive 

equations are of type (26) and in general as the materials described in following way – 
 

( ) ( )

( ) ( ) ( )
m

m

1m

1m

3m

3m

21

022n

2n

n

n

bb_b...bb_

a_a...a_a

ε+ε++ε++ε+ε+=

=σ++σ++σ++σ

−

−

−

−

−

−

&&&

&&
  (12) 

 
In mathematical sense, the absence of  0bε  element in relation (11.1) or (11.2) is the 

reason of so-called irreversibility of those models.  
Having in mind that initial conditions are homogenous, we can solve the differential 

equation obtaining zero values for all constants. Let us assume that the load function for a 
Maxwell model is of the form – 

 

2121o tt)],tt(H)tt(H[ <−−−σ=σ ,      (13) 

 
then we arrive at following solution – 

 








 −
η

+−η−






 −
η

+−η=ε )tt(
1

E

1
)tt()tt(

1

E

1
)tt()t( 2211    (see (20)) 

 
where for 2tt >  we obtain 

 

( )12 tt
1

)t( −
η

=ε  - permanent value.       (14) 

 
We use ‘permanent value’ to distinct above result, which is the solution to differential 
equation – 
  

( ) χ=ε→ε= t0 &  since R∈χ  and 2tt >  ,      (15) 
 

where the value of differential equation constant 0C =  coming from initial conditions. 
 
Concluding – permanent value is caused by the load function and the model has not to be 

irreversible. 
 
Ending this part we repeat some information of Maxwell model. We use the classical 

notation. Viscoelastic behavior can be simulated by spring – elastic resistance E and viscous 
dashpot characterized by η  and which are connected together in series way.  

The customary differential definition form is as follows – 
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σ
η

+σ=ε 1
td

d
E
1

td
d

 or 
η
σ+σ=ε

E

&
& .       (16) 

 
Applying the Carsona-Heaviside’a transformation [9] we obtain - 
  

( ) θ






 θ−
η

+θσ=ε→








η
+σ=ε ∫

=θ

=θ

d)t(
1

E
1

)(
p
1

E
1

p

~p~
t

0

&  .    (17) 

Involving Dirac’s impulse – 

 )t(f)tt(Hdt)t(f)tt( oo

.def

o −=−δ∫
∞

∞−

, (13) [ ] )tt()tt(H
td

d
o

.def

o −δ=− .  (18) 

Subsequently, we get  – 

 [ ])tt()tt()t( 21o −δ−−δσ=σ& ,       (19) 

 






 −
η

+−η−






 −
η

+−η=ε )tt(
1

E

1
)tt()tt(

1

E

1
)tt()t( 2211  .    (20) 

 

Dividing time abscissa into sectors, extreme points occur – 

 )tt(
1

E

1
)tt(

1

E

1
)t(lim 1212

tt 2

−
η

+→−
η

+=ε −→ −

 ,             (21.1) 

 )t(lim)tt(
1

)tt(
1

E
1

)tt(
1

E
1

)t(lim
22 tt

122212
tt

ε=−
η

→






 −
η

+−






 −
η

+=ε
>+ →++→

 ,       (21.2) 

if 2t− , 2t+  differs infinitely from 2t  appropriately approaching from left and right side to 2t  

and 22 tt >> . 

Fig. 3. is an illustration of creep function according to Maxwell model. 
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Fig. 3. The deformation process in the cases of Maxwell model and load function (13) 
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4. The new concept of reversibility for Maxwell Class materials 

 In the beginning, let us recall two simple examples of physical processes.  
First is thanks to so-called ‘Terzaghi’s porous ground’ [10] also known as ‘Terzaghi’s 

foam’. He used successfully the following sequence to estimate settlement of the buildings: 
- The upper surface of ground in natural condition is loaded by erected building; at first we 

can observe immediate deflection caused be elastic ground structure response, next 
- The retarding and decaying flow is observed due to water dislodging, which was filling 

ground porous.  
Let us elongate this concept, adding two new stages – 
- The building structure is disassembled which involves immediate response of ground 

elastic structure   
- After longenough time we can also notice the recovering flow which could be caused by 

gravity forces. In such process, water can fill destressed ground porous volumes again. 
If human live is properly long, one can probably prove above story. 

 
The second example is extremely trivial. We consider three configurations of typical car 

shock absorber the structure of which is practically identical with Newtonian element in 
Maxwell model (Fig. 4.). Assuming an arbitrary configuration as initial - pK  we push the 

device with 1P  force. That deforms the absorber to actual configuration 1aK  (Fig. 4.a.). 

Sequentially, applying force 2P−  we pull the absorber (2P  could be equal or not to 1P ) 

achieving the 2aK  configuration (Fig. 4.b.). 

pK

1P

aK
1

aK
1

2P

aK
2

0L 1L

1L 0L

a)

b)

 

Fig. 4. The sequence of Newton body model configurations 

Now we have to answer the aroused question:  are the configurations 1aK  and 2aK  equal 

or not ?  
In geometrical meaning they are equal without doubt.  
In physical sense the sets – {dash pot structure, work, energy} – of 1aK  and 2aK  can be 

treated in many situations as convergent or even equal. 
 

Fulfilling the superposition rule, reversibility of Maxwell Class models can be better 
understood with the help of hysteresis. We can fully adopt all features which come as a result 
of this notion i.e.: hardening, softening. Yet, the most creative element is the advent of the 
alternate sequence of loads and anti-loads which generate the loop from initial and back  to 
initial configuration.  
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We should also remember that our nearest concept – Bauschinger hysteresis is almost 
always presented as a relation of  σε ~  coordinates. 

 
On the basis of above analysis and involved assumptions, we can propose the following 

new definition of viscoelastic reversibility – 
 

- Since the sequence of loads and anti-loads is defined (it could be called fundamental) and 

- If after applying the sequence, the residual deformation is observed – the material belongs 

to Bingham Class, 

- If contrary – the material is viscoelastc and is characterized as entirely reversible. 

 

Let us now build the fundamental sequence for Maxwell and Kelvin-Voigt models 
assuming  – 

 
{ })]tt(H)tt(H[)]tt(H)tt(H[ 4321o −−−−−−−σ=σ  ,    (22) 

 
since 4321 tttt <<< . Fig. 5. shows the graph of models reversibility in details according to 

(22).  
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Fig. 5. Reversibility of viscoelastic models, including Maxwell Class too. 

 
5. The Vibration of Simply Supported Maxwell Beam 
  

That subject was investigated by many authors, for example Nowacki [5] looked for 
common effects comparing elasticity and viscoelasticity in Maxwell and Kelvin-Voigt 
models. The topic of our consideration is to examine the vibration process at the infinite time 
moment. 
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The dynamical equilibrium equation for elastic infinitesimal beam element is as follows – 
  

 )t,x(q)t,x(w
tg

A
x

EJ 12

2

4

4

=








∂
∂γ+

∂
∂

 ,      (23) 

where: w-beam deflection, A-constant beam cross-section, EJ-bending rigidity, 1q -load linear 
density. 
Denoting beam span by L, we introduce dimensionless coordinates – 
 
 Lx ξ= , Lw ω= , τ= ott  ;         (24) 

 
where ot  - positive constant with time units, 

that involves – 
 

 ( ) ( ) ( ) ( ) ( )τξ=τξωγ+τξω ,q,
tg

AL
,

L

EJ
12

o

IV
3

&&  ,      (25) 

 
since: γ  - material weight density, g – gravity acceleration, IVω  - fourth order derivative 
according to ξ , ω&&  - the second rank dimensionless time parameter derivative. 
Assuming: 
 

 ( ) ( )
gJ
LA

t
4

2
o

γ=  and 
( )

J
L

qq
3

1=              (26.1-2) 

 
we obtain – 
 
 qE IV =ω+ω &&  .         (27) 
 

With the help of Carson-Heaviside transformation according to τ , and involving Alfrey’s 
analogy we can turn into viscoelastic problem  – 
 

 ( ) qp 2IV ~~~E
~ =ω+ω  ,         (28) 

 
since the initial conditions are homogenous. In the case of Maxwell model we obtain – 
 

 
η

+= 1
E
1

pE
~

 ,          (29) 

 
where E

~
 is not Young modulus (E) transformation. 

Let the load function be Dirac’s impulse – 
 

 ( )o2
1

qqq τ−τδ






 −ξδ== τξ         (30) 

 
that yield 
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 τξ= q~qq~  .          (31) 

 
We look for the solution expanding the unknowns and load function into Fourier sine series 
according to ξ  - 

 ( ) ( ) πξω=ξω ∑
∞

=

jsinp~p,~
j

...,2,1j

, ( ) ( ) ( ) πξ=ξ ξ

∞

=
τ ∑ jsinqpq~p,q~

j
...,2,1j

 ,       (32.1-2) 

 ( )
2
j

sin2djsin
2
1

2q
1

0
j

π=ξπξ






 −ξδ= ∫ξ  .      (33) 

 
By virtue of series properties, we have – 
 

 
( )

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )( )21

j
44

2

j
42

j
j

,...,2,1j pppppf
~

qq~

j
E
j

pp

qq~

jE
~

p

qq~~
−−=

=

η
π+π+

=
π+

=ω∀ ξτξτξτ

∞=
. (34) 

 

The roots of  ( ) 0pf
~ =  are as follows – 

 
( )

( ) ( )∆α=























πη
−π−= mm 1

j

E21
11

E2
j

,p
2

2

4

21  .     (35) 

Applying faltung theorem we can find Fourier coefficients jω  –  

 ( ) ( ) ( )( ) ( ) =θθ−τ








−−
τ−θδ=ω −

τ

ξ ∫ d
pppp

p
Cq

21

1
o

0
jj      (36) 

( ) ( ) ( )( ) ( )o
21

1
oj pppp

p
CHq τ−τ









−−
τ−τ= −

ξ , 

 
where [ ]⋅−1C  is the symbol of Carson-Heavisidea retransformation. 

Both roots (35) are j  function. Having in mind that E and η  are positive we arrive at –  
 

 ( ) 1
j

E21
1limlim

2

2jj
=









πη
−=∆

→∞→∞
 ,       (37) 

 
and in consequence for large enough j  value the roots are real and equal to – 

 0p1 =∞ ,  
( )

E
j

p
4

2

π−=∞  .           (38.1-2) 

 
We have to analyze three potential variants – 
 

I. ( ) →








πη
>→>∆

2

2j

E21
10  the roots are real and negative, 21 pp < , 
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II.  ( ) →








πη
<→<∆

2

2j

E21
10  the roots are conjugative complex 21 pp =  when ( ) 0pRe 1 <  , 

III.  ( ) →








πη
=→=∆

2

2j

E21
10  we have dual real root 

( )
E2

j
pp

4

21

π−== , it could be only for 

one j  index value. 
 
The complexity of the problem consists in simultaneous occurrence of all (I-III) variants.  

Simplifying, let us assume that we found .grj  by solving III and Nj .gr ∉ . .grj  is dividing j  

domain into two parts where - 
- Variant I is valid for .grjj <−  and  

- Variant II when .grjj >+ . 

Additionally, we can state .grj  is not large and we can neglect the condition (38.1-2) which 

obeys ∞→j . 
Variant I is associated with hard viscous damping. Variant II describes decaying beam 

vibration. 
In our problem the Jordan’s lemma is fulfilled and we can apply residual theorem. The 

original for the variant I has the form - 
 

 ( )( ) ( )[ ] ( )[ ] ( )τ∆α
∆α

=
∆+α−∆−α−

=








−−

αττ
− ∑ sh

e

1p1p

e
sRe

pppp
p

C
p

21

1  . (39) 

 
For variant II, with the help of Euler’s formulae, we arrive at – 
 

 

( )( ) ( )[ ] ( )[ ]

( )[ ] ( )[ ]
( )

∆α

τ∆α
=

∆+α−∆−α−
=

=














∆+α−∆−α−
=









−−

ατ
τ

−−

∑
sin

e
1p1p

e
sRe

1p1p

p
C

pppp
p

C

p

1

21

1

ii

ii

,  (40) 

 

where 1−=i . 
In case of large j  values we have – 
 

 1lim
j

→∆
∞→

 and 
( )

0
sin

elim
j

→









∆α
τ∆αατ

→∞
.      (41) 

 
On the basis of (46) we get – 
 

 ( )
( )

( )[ ]ooj sh
e

H
2

j
sin2

o

τ−τ∆α
∆α

τ−τπ=ω
τ−τα

−
−

     (42) 

and 
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 ( )
( )

( )[ ]ooj sin
e

H
2
j

sin2
o

τ−τ∆α
∆α

τ−τπ=ω
τ−τα

+
+

.     (43) 

The solution of the problem has the following series form – 
 

 ( ) ( ) ( )πξω+πξω=τξω +

∞

+=
−

=
+

+

−

−

∑∑ jsinjsin, j
...,1)j(Intj

j

)j(Int

...,2,1j .gr

.gr

.    (44) 

 

Now we can find the limit of (54) for 
2
1=ξ  and ∞→τ  – 

 

 

( )
( )[ ]

( )
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The result that has been obtained is clearly proving that Maxwell model, and generalizing 

Maxwell Cass models, are reversible. 
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