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Abstract

Assuming Boltzmann’s superposition rule and nom@gmaterials the reversibility of linear
phenomenological viscoelastic models are invesatith special attention to Maxwell-Burgers
bodies like.

On the basis of Terzaghi's porous ground and hgsterphenomenon, the new concept of
reversibility is presented. The above idea is fitlied in the cases of Maxwell and Kelvin-Voigt
models.

Finally, the task of simple beam vibration is amely, while its material properties are found as
adequate to Maxwell's model. The result that haenbabtained is proving that Maxwell model, and
generalizing Maxwell Class models, are reversible.

1. Introduction

Not frequently, but it happens that in technic@riture, especially in highway
engineering, there appears incorrect classificasfdBurgers model [1], [2], [3]. As it is
presented at Fig. 1., Burgers creep function iadeguate approximation curve for
describing presented laboratory results, but tteegstt application yield rather to large least
squares method error [4]. The components of Bungedel can be sectioned off into
following elements —

linear exponental —_ exponenti&
v-e + sv—e . SB - se +0+ sv—e ' (1)

1 €5 =€, +E
wheree, - stands for the immediate elastic straifi? - linear viscous flow process of strain,

exponentia
v—-e

€ - exponential viscous flow; the arrows orientatis@ssociated with -+ - applied

load period and - destressing.
The above description strongly shows the absene&bfcomponent in destresing

process. The lack of this element entails tredtiegresidual value in Burgers creep function
as an irreversible part and as a consequencedsifgl8urgers model as irreversible too.
Our aim is to show the contradiction of such coneey try to formulate the idea of
reversibility.
With reference to straightforward applying of Bungenodel — is better to use the
expanded Burgers model by series connection witht-&&nant element [5] —

€ =€ tEsy (2)

whereg; - summary straing; - Burgers model strairgg,_,, - plastic strain., in that case we

bear in mind that the involved model belongs togBismm Class bodies. In such case, one can
avoid the inaccuracy of approximation errors.

In further considerations Maxwell Class model isenstood as - the Maxwell as well as
Gubanow and Burgers and similar other models.



] st)/o Constant temperature: 20C

time
[sec]

o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o
™ (o) o N n 0] — < N~ o [{e) (2] N Lo [o0] <

— — — N N (qV] ™ [42] ™ ™ < < < n n
[ol=[MPa] ¢ 0=01 —4+-0=035 % 0=045 % 0=06

Fig. 1. An example of typical road pavement aspimattar creep test graph. The ordinates related to
the last abscissa value, in technical sense, eaitett as measures of plastic deformations.

2. Viscoelasticity

Viscoelesticity could be treated as a natural esitenof elasticity. The elasticity is
precisely defined by mathematical relations andspay concepts. In the case of
viscoelasticity the definition is not so clear. \é&n define viscoelasticity as a relation
between stress and strain tensors and their timneatiges of different ranks

o110 i) 1)

m* n* m?*"’n»r'm?*»'n yreee

V) - Fo,6,6,8,8,8, ... =0, 3)

o, m=123 - invariants of the stress tensoy Iff), n=1,2,3 - invariants of the strain

tensor, dots which can be noticed over the symbwans partial derivatives according to
time.
The second element of viscoelastisity definitiomes from Boltzmann’s superposition,
which refers to the load history. We conclude that:
- Each load is a component of the load history,
- The total final strain is a sum of deformations s=l by all components of the load
history.
Although the examples of the Bolzmann’'s principln de found in many works, we
illustrate them below by taking into account thadd4) acting to Kelvin-Voigt and Burgers
models —

where )

0= Ol[H(t - tl) - H(t _t4)] + oz[H(t _tz) - H(t - ts)] (4)

- Heavisidea's step function,
O «— (t_t(_)) <O

where: (5) H(t—t(.)):{

0,, 0,; sSigo,] =sigo,] - different stress values, <t, <t, <t, - time moments.
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Fig. 1. Boltzmann’s superposition. a) Loads. b)Jie-Voigt model reaction. c) Burgers body
response.

In the case b) the unloading causes that the detamfades after longenough time,
So we get
lime, = Itim e, -0, (6)

t-oo

whereas for Burgers material c), according to #iraesload history a), we observe permanent
strain value whert - oo:

!imslzelwio, lime, =¢, #0, !imezelw+82w:ew. (7)

t o0

According to Fig. 1., fot - o : Kelvina-Voigt model return to the initial nullrain value
while Burgers model achieve a residual (non-initisfrain value and looks like to be
irreversible one, as has been noticed in the beggnof the paper. All the time we have in
mind that both of these models are linearly visasiit.

Let us also discuss the concept of Perzyna [6§pite of the fact that he regards visco-
plasticity, his methodology is very useful for atlog to our problem. We can reathé
methods of viscoplasticity belong neigher to rhgglmor to plasticity. On that basis he
introduces two material classes:

- Elastic- viscoplastic- for which the material shows viscous properitielsoth elastic and
plastic regions.

- Elastic/ viscoplastic- reserved for materials showing viscous propegiitieplastic region
only.
In both cases above the viscous flow deformatiandcbe further divided into irreversible
and reversible parts



g =€ +g +€f (8)

ij

&, &, € - are as it follows: total, elastic, viscous andsfic strain tensor

components. Contemporary both processes are atgsag Bingham model.

since &,

ij?

Adopting Perzyna’s concept we can introduce tw@sypf viscoelasticity:
- Visco - elasticity- when viscous and elastic components developrallel and

- Visco / elasticity- for the previous immediate elastic deformatiod after that viscous
deformation process,

but both of them are reversible. According to tingetscale of road pavement asphalt-mortar
creep test, it could be included intdsco / elasticity class, which is identical with
viscoelasticity in further considerations.

Relation (1) can be treated as a complete consgtuelation and, in our consideration,
we confine ourselves to invariant linear processesatisfying the relation —

km

o)=Y o, fL(t-t,)], (9)

m=123

where ¢ -strain, o) -stress in the one dimensional case and t —iiseagarameter.

We would like to emphasize that the creep problenreduced to the case of one
dimensional body and to the analysis of an ingtage — transient creep. We disregard steady
state creep and creep to failure. Additionally, agsume that initial conditions are always
homogenous.

3. Maxwell Class Models

Let us compare the differential constitutive relat of several elementary viscoelastic
models:

- Maxwell 0a, +0a, = _+£Db,, (10.1)
- Burgers Oa, + 0a, + 0a, = _+£b, +£Db,, (10.2)
- Kelvina-Voigt oa, =eb, +£b,, (11.1)
- Zener 0a, +0a, = eb, +&b;; (11.2)

where a, ,a, ,a,,b,,b,,b, - are the material characteristics. In spitehefdame notation they
can have different values for different models.

Nowacki [7] comments the following formulB(D)o(t) = Q(D)e(t) by sentences -The

ranks of Q(D) and P(D) operators should be equakrfih and ‘It is admissible to assume
the case when the rank of Q(D)is one rank highenthe P(D) rank’.



Also Rzanicyn analyses the problem [8] writing doWing remarks —The rank of
differential equation is equal to the number ofliasts in the modeknd‘In case of lacks of
constant elastic connection between deforming poithiten instead ofe we have its time
derivative. The long-standing stress yields ¢himcrease up to infinity’.

For (10.1-2) and (11.1-2) the conditions formulateg Nowacki and Rzanicyn are
fulfilled but we can also notice not discusseddeai.e. the absence of one sequence element
in Maxwell and Budgers models, notified by in (11.1-2) formulae.

Now we can also define the Maxwell Class as mod@swhich theirs constructive
equations are of type (26hd in general as the materials described inviatig way —

(n) (n-2)
ca,+_+ 0 4a,_,t+..t0a,+_+0q,=
. - (m-3) (m-1) (m)
=_+¢b +Eb,+..+ € b, ,+_+ € b _,+€b,

(12)

In mathematical sense, the absence gif, element in relation (11.1) or (11.2) is the

reason of so-called irreversibility of those models

Having in mind that initial conditions are homogasp we can solve the differential
equation obtaining zero values for all constanet. s assume that the load function for a
Maxwell model is of the form —

0 =0 [H(t-t) -H{t-t,), t,<t,, (13)

then we arrive at following solution —
1 1 1 1

e(t) =n(t- tl)[E + N (t- tl)} -n(t- t2)|:E + N (t- tz)j| (see (20))

where fort >t, we obtain
1

g(t) = ﬁ(t2 —t,) - permanent value. (14)
We use ‘permanent value’ to distinct above reswitjch is the solution to differential
equation —

0=¢ - e(t)=x sincex Randt>t, , (15)

where the value of differential equation const@nt 0 coming from initial conditions.

Concluding permanent value is caused by the load functionthednodel has not to be
irreversible.

Ending this part we repeat some information of Makwnodel. We use the classical
notation. Viscoelastic behavior can be simulatedgjfayng — elastic resistande and viscous
dashpot characterized lyy and which are connected together in series way.

The customary differential definition form is adléovs —



—=———+=-0 oré=%+g. (16)

Applying the Carsona-Heaviside’a transformation@j obtain -

~ (p3)(1 1 (11

S_LEJfE+Bﬁ]_*s_ifﬂmﬂé+ﬁa_eﬂde' (17)
Involving Dirac’s impulse —

]06(t—to)f(t)dtd§f'H(t—to)f(to), (13) %[H(t—to)]dif'a(t—to). (18)
Subsequently, we get —

a(t) = o, [3(t — t,) = 3(t - 1,)], (19)

() =n(t —tl)[1 +1( —tl)} -n(t- tz){1 +1( —tz)} . (20)

E n E n

Dividing time abscissa into sectors, extreme padatsur —

. 1.1, 1.1,
tllrnzs(t)_E+ﬁ(—t2 tl)_’E"'H(tz tl)' (21-1)

. B RN O I 1, .\
tllrﬂzs(t)'{E+ﬁ(+t2 tl):| {EﬁLH(Jz tz)} - ﬁ(tz tl)—l'rﬂze(t) , (21.2)
if _t,, ,t, differs infinitely from t, appropriately approaching from left and right side,
and.t, >t,.

Fig. 3. is an illustration of creep function acaogito Maxwell model.
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Fig. 3. The deformation process in the cases ofvivibxmodel and load function (13)



4. The new concept of reversibility for Maxwell damaterials

In the beginning, let us recall two simple exarséphysical processes.
First is thanks to so-called’érzaghi’'s porous groundl10] also known asTerzaghi’s

foam. He used successfully the following sequencestoreate settlement of the buildings:

- The upper surface of ground in natural conditiolo@led by erected building; at first we
can observe immediate deflection caused be elgisiind structure response, next

- The retarding and decaying flow is observed due d@tewdislodging, which was filling
ground porous.

Let us elongate this concept, adding two new stages

- The building structure is disassembled which invelnvamediate response of ground
elastic structure

- After longenough time we can also notice the redageflow which could be caused by
gravity forces. In such process, water can fillteessed ground porous volumes again.

If human live is properly long, one can probablgy® above story.

The second example is extremely trivial. We consildexe configurations of typical car
shock absorber the structure of which is practadiéntical with Newtonian element in

Maxwell model (Fig. 4.). Assuming an arbitrary dgafation as initial K ; we push the
device with B, force. That deforms the absorber to actual condigom K, (Fig. 4.a.).

Sequentially, applying force P, we pull the absorberR, could be equal or not tB,)
achieving theK _, configuration (Fig. 4.b.).
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Fig. 4. The sequence of Newton body model configuma

Now we have to answer the aroused question: aredhfigurationK, andK,, equal

or not ?
In geometrical meaning they are equal without doubt
In physical sense the sets — {dash pot structuoel,venergy} — ofK , andK,, can be

treated in many situations as convergent or evealeq

Fulfilling the superposition rule, reversibility dflaxwell Class models can be better
understood with the help of hysteresis. We cary fadlopt all features which come as a result
of this notion i.e.hardening, softeningYet, the most creative element is the advenhef t
alternate sequence of loads and anti-loads whidergée the loop from initial and back to
initial configuration.



We should also remember that our nearest concdgauschinger hysteresis is almost
always presented as a relation ©f o coordinates.

On the basis of above analysis and involved assangtwe can propose the following
new definition of viscoelastic reversibility —
- Since the sequence of loads and anti-loads isetfiih could be called fundamental) and
- If after applying the sequence, the residual de&diom is observed — the material belongs
to Bingham Class,
- If contrary — the material is viscoelastc and iscdcterized as entirely reversible.

Let us now build the fundamental sequence for Mdixwad Kelvin-Voigt models
assuming —

0 =0 {[H(t-t,) - H(t—-t,)] -[H({t-t,) ~H({t-t,)]} (22)

sincet, <t,<t,<t,. Fig. 5. shows the graph of models reversibilitydetails according to
(22).
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Fig. 5. Reversibility of viscoelastic models, inding Maxwell Class too.

5. The Vibration of Simply Supported Maxwell Beam

That subject was investigated by many authors, f@amgle Nowacki [5] looked for
common effects comparing elasticity and viscoatagtiin Maxwell and Kelvin-Voigt
models. The topic of our consideration is to exantiveevibration process at the infinite time
moment.



The dynamical equilibrium equation for elastic im@simal beam element is as follows —

9* YA 92
J— +—— |w(x,t) =q,(x,t) , 23
|: 6X4 g at2:| ( ) ql( ) ( )
where: w-beam deflection, A-constant beam crossesedJ-bending rigidityg, -load linear
density.

Denoting beam span by L, we introduce dimensiontessdinates —
Xx=¢L,w=wL, t=t7; (24)

wheret, - positive constant with time units,
that involves —

Ew’%&xﬁﬂd)(at):ql(&,r) , (25)

(LY a(t,f

since: y - material weight density, g — gravity accelemfio” - fourth order derivative
according to¢ , & - the second rank dimensionless time parametéeraiise.
Assuming:

A(L) L)
(t,) =Y J(g) andq=q, ( J) (26.1-2)
we obtain —
Ew' +w=q. (27)

With the help of Carson-Heaviside transformatioocading to T, and involving Alfrey’s
analogy we can turn into viscoelastic problem —

EQ” +(pf®=7, (28)
since the initial conditions are homogenous. Indagse of Maxwell model we obtain —

E=pl+l, (29)

where E is not Young modulus (E) transformation.
Let the load function be Dirac’s impulse —

0=, = 6[6 —%j d(t-1,) (30)

that yield



a = qiar ' (31)

We look for the solution expanding the unknowns boadl function into Fourier sine series
according to¢ -

aen)= 3 @ )sinime, den)=a(0) Y (a) sinire (3212)
(@) = 2@ 6(& —%jsinjnz g = 2sinL (33)

By virtue of series properties, we have —

_ Glw) 0 Gla) ) G (a),
S R AR N A ORI 3 M
E n

The roots of f (p) = 0 are as follows —

p%{l =] ]w@wz). -

Applying faltung theorem we can find Fourier coeffnts w, —

0 = (qz ),-;[ 5 l[ (- pl)p(p N F)ZJ(T -6)do= (36)

6-1,)C
:(qz),-H(T—To)C'{(p_plp }(T—ro),

)(p_pz)

where C‘l[[]] is the symbol of Carson-Heavisidea retransforomati
Both roots (35) are j function. Having in mind tHatandn are positive we arrive at —

lim VA =tim [1-3 -2 | =1, (37)
e e || (jm

and in consequence for large enough j value this e real and equal to —

E

ploo = 0 ! p2°o (381-2)

We have to analyze three potential variants —

2
. A>0-1> ﬁ{(Z—E)Z} - the roots are real and negatiye<p,,
it

10



- 2
I A<0_1<t (2E)2 ~. the roots are conjugative complpx=p, when Re(p,) <0
Tt

nL
— -2 i 4
. A=0- 1:1 Z—EZ — we have dual real rogt, = p, = —m, it could be only for
r]_(Jn) 2E

one j index value.

The complexity of the problem consists in simultaue occurrence of all (I-11l) variants.
Simplifying, let us assume that we foung by solving Il and j, O N j, is dividing |
domain into two parts where -

- Variant | is valid for_j<j, and

- Variant Il when,j>j, .
Additionally, we can statg, is not large and we can neglect the condition¥28 which
obeysj - oo,

Variant | is associated with hard viscous dampMagriant Il describes decaying beam
vibration.

In our problem the Jordan’s lemma is fulfilled and can apply residual theorem. The
original for the variant | has the form -

C_{(lo pl)?p pj “-ab- J—)J [p aft+Va) “oda

For variant 11, with the help of Euler’s formulage arrive at —

sh(or AT) . (39)

A= - a@ il bl |

- X
T ekl el

wherei=+/-1 .

In case of large | values we have —

limA - 1 andlim [ ‘“MJ - 0. (41)

av/a

J—»oo J_,oo

On the basis of (46) we get —

: o (1-1,)
DN | AR -
®, = 2sin=_= H(t-1,) ™ F{a Alt-1 )] (42)

and

11



j T I~ (t-14
+

> H(T—TO)O(\AZ; Sin[GM(T—TO)]. (43)

The solution of the problem has the following sefiem —

W, = 2sin

W€ 1)= 3, w sin(jie)+ > w;sin(,jmE). (44)

=12, =Nt )+

Now we can find the limit of (54) fo€ :% andt - o —

T—-00 T—00

lim m(%,rj =2lim {In%) [Sini;jz e(z(:/_; Sl“{a\/Z(‘r—ro)]+

(45)

a(t-14

+ i (sin*énjzz(—\/ﬁsin[a\/m&—ro)] =0.

It )41,

The result that has been obtained is clearly poptiat Maxwell model, and generalizing
Maxwell Cass models, are reversible.
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